Dougherty Valley HS Chemistry - AP Thermochemistry – Bond Energy Practice 1

Wor	ksheet	: #8
		. 11 🔾

Name:	Period:	Seat#:
14411101	1 01104.	ooutn.

Directions: Show all work in a way that would earn you credit on the AP Test! This is always the rule! Some answers are provided at the end in italics and underlined. If you need more space, use binder paper and staple to your worksheet.

Average Bond Enthalpies (kJ/mol)

Averag	ge bond b	:riuiaipies (ku/	moi)						
Single	Bonds								
С—Н	413	N—H	391	(о—н	463	F-F	155	
C-C	348	N-N	163	(0-0	146			
C-N	293	N-O	201	(Э—F	190	Cl—F	253	
c-o	358	N-F	272	(O—Cl	203	Cl—Cl	242	
C-F	485	N—Cl	200	(о—I	234			
C-CI	328	N—Br	243				Br—F	237	
C—Br	276			5	5—H	339	Br—Cl	218	
C-I	240	H-H	436	5	5—F	327	Br—Br	193	
c-s	259	H-F	567	5	S—Cl	253			
		H—Cl	431	5	S—Br	218	I—Cl	208	
Si—H	323	H—Br	366	5	s—s	266	I—Br	175	
Si—Si	226	H—I	299				I—I	151	
Si—C	301								
Si-O	368								
Multip	le Bonds								
C=C	614	N=N	418	(O ₂	495			
C = C	839	$N \equiv N$	941		_				
C=N	615			5	S=0	523			
C = N	891			5	s=s	418			
c=0	799								
C = O	1072								

- 1) In general, how do bond energies of single, double, and triple bond compare? Explain.
- 2) When chemical bonds break, energy is ______.
- 3) When chemical bonds form, energy is ______.
- **4)** Find the enthalpy (Δ H) for the <u>unbalanced</u> reactions that follow. Make sure to write the balanced eq. first, and draw Lewis Structures to help you determine the bonds broken/formed if you don't know what it looks like off the top of your head!
 - a. Combustion of methane (CH₄) -808 kJ/mol

b. Formation of water --243 kJ/mol

c. Formation of hydrochloric acid -92 kJ/mol

d. ____CH₄ + ____Cl₂ \rightarrow ____CH₃Cl + ____HCl $\frac{-104 \text{ kJ/rxn}}{}$

e. $CH_4 + CI_2 \rightarrow CH_2CI_2 + HCI$